

Day-Ahead and Short-Term Unit Commitment OPF with Voltage Stability Constraints

California ISO

Dr. Khaled Abdul-Rahman

Dr. Enamul Haq

Dr. Jun Wu

Bigwood Systems, Inc.

Dr. Hsiao-Dong Chiang Mr. Pat Causgrove

Introduction

- The California ISO (CAISO) (Folsom, CA) has developed as set of look-ahead tools with Bigwood Systems (BSI) (Ithaca, NY):
- To run analysis on forecasted operating cases to anticipate voltage problems
- To supply optimized enhancements using operational tools such as:
 - Reactive power compensating devices
 - Real generation
 - Reactive power generation
 - Load shedding to prevent collapse, worst case

Introduction (2)

- Voltage Stability Analysis and Enhancement
 - Day-Ahead (VSA-DA)
- Voltage Stability Analysis and Enhancement
 - Short-Term Unit Commitment (VSA-STUC)
- Voltage Stability Analysis and Enhancement
 - Look-Ahead (VSA-LA)

Background

- Voltage instability and fluctuations tend to occur much earlier than voltage collapse
- As power systems become more stressed and the penetration of renewable energy increases, system operators need to analyze voltage security of the systems based on **actual** operating conditions, **contingency** and **stressing** of the system.
- Preventive steps taken before a potential voltage collapse scenario are valuable

What is Needed?

- The ability to anticipate problems related to contingencies, unusual operating conditions, power transfers, etc.
- Time to prepare the system adjustments necessary for reliable operation of the grid
- A longer forecast window to provide the ISO the critical time necessary to identify voltage issues and prevent voltage collapse

Starting Points

- The ISO had in place BSI's tools using the Energy Management System (EMS) data to supply:
 - 5-minute data to On-line VSA Real-Time (VSA-RT)
 - 2-hour forecasts to On-line VSA-Look-Ahead (VSA-LA)

On-line VSA&E

- Comprehensive power system modeling,
- Computation of P-V curves
 - load margin to voltage collapse
 - margin to voltage limit violation
 - margin to thermal limit violation
- CIM input
- Capability curves
- Large contingency lists
- Handling of state-based RAS/SPS

On-line VSA&E (2)

- The most advanced and patented methods are used to rapidly calculate the exact nose point and P-V, Q-V and P-Q-V curves and to perform fast contingency screening and ranking.
- When the load margin for the base case and limiting contingency is insufficient, VSA&E determines the effective preventive or enhancement control to increase load margin

Greater Reach

- The VSA&E-RT and the VSA&E-LA tools are vitally effective over the limited timeframe of the EMS source information
- To greatly expand the forecast time horizon, the ISO developed new BSI applications to supplement the EMS-based VSA&E with market-based data
- Executed on a periodic basis
- Cases developed from forecasted market postings

New Tools Introduced

- VSA-DA (24 hours ahead, hourly data)
- VSA-STUC (4.5 hours ahead, 15-minute data)
- Enhanced VSA Look-Ahead
- Employ market results to effectively supplement decision makers with a longer forecast time horizon
- Now running in production environment at the ISO

On-line Voltage Stability and Enhancement in the CAISO power market

- The day-ahead market (VSA&E-DA)
 - Processes cases for day-ahead+1 through dayahead+6
 - Each day consists of 24 hourly cases
 - Update once per day
 - Preventive and Enhancement Control run as needed

On-line Voltage Stability and Enhancement in the CAISO power market

- The short-term unit commitment market (VSA&E-STUC)
 - Processes cases for next 4 and one-half hours
 - Each hour consists of 4 15-minute cases
 - Updated every hour with 18 cases
 - Preventive and Enhancement Control run as needed

System Architecture Distributed, High Availability

On-line VSA&E Day-Ahead and STUC

- The daily payload of Market Data and the hourly payload of Market Data are processed by VSA&E immediately on receipt
- The VSA&E model for each case is built directly using the Market data for the market areas internal to CAISO
- For market areas external to CAISO the VSA&E model is built using the EMS Static CIM database and historical data (Load Distribution Factors, Generator Distribution Factors and relevant outage information)

On-line VSA&E-DA-STUC Base Cases

- A base model is assembled for the entire WECC system
- BSI's power flow is run to create a base case for each time period in the batch to use in Day-Ahead Analysis and STUC Analysis
- These batched VSA&E cases and results available for display in their respective Viewer tool and for further analysis and inspection in the VSA&E Study Mode tool

On-line VSA&E User Interface

Base Case

- Display On-line or
- Browser Mode data

Limiting Contingency Case

- Display On-line or
- Browser Mode data

Renewable Energy Handling - Why Is it Required Power Train

- Modern Power system operates close to capacity
- Proliferation of stochastic renewable energy sources e.g. Wind & solar
- Increases uncertainty in the power system and hence possible violation of systems limitations
- No existing tools for assessing the stability of power system exposed to this danger

Power Transfer Capability

Renewable Energy Handling - How it Works

Load Margin Distribution for Renewable Scenario

VSA&E Generated Nomogram

- Black nomogram curve represents the calculated curve
- Red nomogram curve represents the analytical representation of the nomogram.

VSA&E – Study Mode

- VSA&E study tools for offline analysis of:
 - Current RT or LA case
 - 2. RT/LA/DA/STUC archived cases
 - Imported off-line operations planning studies
 - VSA studies built in the tool from any power flow case

VSA&E Control

- Preventive Control for Insecure Contingencies VSA&E determines effective preventive controls to the base case such that insecure contingencies are eliminated by exercising all available control actions before resort to load shedding.
- Enhancement Control Determines effective enhancement controls to selected base case/contingency for desired load margins by exercising all available control actions and load shedding by applying the user design

Fast Contingency Ranking & Accurate Margin Estimation

Contingency Ranking & Estimated Margins

Session: __buildin.ses Conting. List: __buildin.ses Run Date: 6/6/06 18:00

		Contingency	Margin		
Rank	<u>Number</u>	<u>Name</u>	<u>P</u>	Q	
1	18550	Cayuga Park-Buttermilk Mill (138/01) 138 kV line	0.000	0.000	
2	18520	Hickory Hollow-Buttermilk Mill (138/02) 138 kV line	0.000	0.000	
3	6820	Reuben-Quarry 115 LINE	0.000	0.000	
4	18180	Taughannock#1 230/115 kV Transformer	0.000	0.000	
5	18250	Applegate-Enfield & Ulysses-Swamp College	2429.753	235.050	
6	18010	Ludlowville (8789) & Groton 1181	2579.699	249.556	
7	6780	Van Etten-Spencer 230 LINE	2658.051	257.135	
8	18730	Tioga-George-Junior 230kV & Junior Units 1,2&3	3062.834	296.293	
9	18020	Virgil-Jacksonville 500 kV line & Genoa CTs	3081.472	298.096	

Contingency Ranking Report showing the first 9 in the ranking, including 4 insecure, ranked 1-4

Preventive Control Scenario

_Buildin_EAST Preventive Control Table

Session: __buildin.ses Conting. List: __buildin.ses Run Date: 6/7/06 14:00

Preventive Control

Insecure Contingency Name	Margin for Pre-control System (MW)	Margin for Post-control System (MW)		
Vanness-Bethesda-Bells Mill (13812) 138 kV line	0.000	839.510		
OStreet-Bethesda-Bells Mill (13816/02) 138 kV line	0.000	1571.389		
PORTLAND-PEQUEST RIVER 115 LINE	0.000	424.444		
Lewistown #3 230/115 kV Transformer	0.000	2832.650		

Num	Location		<u>Area</u>	Type	Original Amount	Control Amount	Final Amount	Upper Limit	Lower Limit
1	1105 GILBERT 230.(1103 GILBERT 34.0kV	1	JC	LTC	1.00000	-0.08125	0.91875	1.50000	0.51000
2	1103 GILBERT 34.0 1093 GILBERT 1.0kV	1	JC	LTC	1.01910	-0.03750	0.98160	1.50000	0.51000
3	1103 GILBERT 34.0 1094 GILBERT 1.0kV	1	JC	LTC	1.01910	-0.03750	0.98160	1.50000	0.51000
4	1432 HOOVERSV 11 1433 HOOVERSV 230.0kV	1	PN	LTC	1.01510	0.11169	1.12679	1.15900	0.94970
5	1575 BELLSMIL 138. 1577 BELLSMIL 230.0kV	1	PEP	LTC	0.96700	0.16325	1.13025	1.15000	0.94090

Enhancement Control Scenario

• For user request of 200 MW, the 4 recommended control actions will enhance the load margin by 207 MW increasing the load margin from 2710 MW to 2917 MW.

_Buildin_EAST Enhancement Control Table

BSI

Session: buildin.ses Conting. List: buildin.ses Run Date: 6/9/06 10:00

Enhancement Control

Specific Contingency Name	Steele-Vienna & Ind River- Milford
Margin for Pre-control System (MW)	27 10. 52 00 2
Margin for Post-control System (MW)	29 17. 33 008
Required Margin Increase (MW)	200.00000
Real Margin Increase (MW)	206.81000

<u>Num</u>	Lo cation	Are	<u>Type</u>	Original Amount	Control Amount	Final Amount	<u>Upper Limit</u>	Lower Limit
1	1927 EDGEMOOR 21926 EDGEMOOR 138.0kV	1 DP	LTC	1.00000	-0.05000	0.95000	1.05000	0.95000
2	1993 MILFORD 23 (1992 MILFORD 138.0kV	1 DP	LTC	1.00000	-0.03750	0.96250	1.50000	0.51000
3	2046 REDLION 500 2044 REDLION 230.0kV	1 DP	LTC	1.03120	-0.00625	1.02495	1.10000	0.90000
4	1923 EDGEMOOR 19.0kV	1 DP	. Gen_Q	1.00180	0.01494	1.01674	1.05072	0.94928

CAISO VSA&E/DA/STUC: On the Drawing Board

- Renewable Energy Engine Enhancement
 - Implement Novel Scenario Generation and Reduction Schemes and Enhance Parallel Computation Engine for VSA/DA/STUC/Renewable
- Toward Reliable Solver Engines for Power Networks under Renewables: Solutions and Incorrect Data Detection
 - Improved reliable power flow solver to replace the current flat start power flow solver
- Renewable Energy: Worst Renewable Scenario
 - Computing the worst-ranked case scenarios and their associated load margins, in addition to the current confident margin, expected margin and probability distribution bar chart.

Thank You

California ISO

Dr. Khaled Abdul-Rahman

Dr. Jun Wu

Dr. Enamul Haq

Bigwood Systems, Inc.

Dr. Hsiao-Dong Chiang Mr. Pat Causgrove